Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Herbert Schumann, ${ }^{\text {a }}$ Sebastian Dechert, ${ }^{\text {a }}$ Irina I. Pestova ${ }^{\text {b }}$ and Mikhail N. Bochkarev ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany, and ${ }^{\mathbf{b}} \mathrm{G}$. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, 603950 Nizhny
Novgorod GSP-445, Russia

Correspondence e-mail:
schumann@chem.tu-berlin.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.088$
Data-to-parameter ratio $=19.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}\left[\mu-\eta^{5}: \eta^{1}\right.$-2-(cyclopentadienyl)ethoxy]bis[$\left(\eta^{5}\right.$-cyclopentadienyl)(1,2-dimethoxy-ethane- κ O)yttrium]

Abstract

The reaction of $\mathrm{Cp}_{3} \mathrm{Y}$ with 2,4-cyclopentadiene-1-ethanol and recrystallization from 1,2-dimethoxyethane (dme) gave the title compound, $\left[\mathrm{CpY}\left(\mu-\eta^{5}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)(\mathrm{dme})\right]_{2}$ or [$\left.\mathrm{Y}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}\right)_{2}\right]$. Bond lengths and angles of the dimeric complex are comparable with similar cyclopentadienyl and μ-alkoxo complexes of yttrium. The complex has crystallographically imposed inversion symmetry and features two Y atoms that exist in distorted trigonal bipyramidal coordination geometries.

Comment

The title compound, (I), possesses crystallographically imposed inversion symmetry. Both Y atoms of the dimeric complex are bridged by the two O atoms of the 2-(cyclopentadienyl)ethoxy ligands. The metal centers are coordinated to two cyclopentadienyl rings and three O atoms, by two cyclopentadienylethoxide O atoms and one O atom of the dme ligand. The coordination geometry around each Y atom corresponds to a distorted trigonal bipyramid. The distances of the metal centers to the bridging O atoms are longer than those reported for the dimeric alkoxides $\left[\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}(\mu\right.$ $\mathrm{OMe})]_{2}[2.217$ (3) and 2.233 (3) Å; Evans et al., 1992] and $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}\left(\mu-\mathrm{O}^{i} \mathrm{Pr}\right)\right]_{2}[2.2228$ (19) and 2.2432 (19) \AA; Li et al., 2000], but comparable with the values found in $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}\left(\mu-\mathrm{OCH}=\mathrm{CH}_{2}\right)\right]_{2} \quad[2.275$ (3) and 2.290 (3) \AA; Evans et al., 1986].

Only one O atom of the bidentate 1,2-dimethoxyethane (dme) ligand is coordinated to the metal center. Compared to the $\mathrm{Y}-\mathrm{O}$ bond lengths of the alkoxide O atoms, the distance between the metal center and the dme O atom is much longer. A similar value was observed for the $\mathrm{Y}-\mathrm{O}$ distance to THF in $\mathrm{Cp}_{3} \mathrm{Y}$ (THF) [2.451 (4) \AA; Rogers et al., 1981]. A shorter distance was reported for the alkoxide $\left(\mathrm{Cp}_{2}{ }_{2} \mathrm{Y}\right)_{2}(\mu$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)(\mathrm{THF})_{2}\left[\mathrm{Y}-\mathrm{O}_{\mathrm{THF}} 2.398\right.$ (5) \AA; Deelman et al., 1995].

The distances of the Y atom to the cyclopentadienyl-ring centroids are in good agreement with the distances found in $\mathrm{Cp}_{3} \mathrm{Y}$ (THF) (2.438, 2.453 and $2.454 \AA$ A Rogers et al., 1981).

The $\mathrm{O}-\mathrm{Y}-\mathrm{O}^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y, 1-z$] bond angle of the central $\mathrm{Y}_{2} \mathrm{O}_{2}$ ring is somewhat smaller than

Received 30 October 2002 Accepted 5 November 2002 Online 15 November 2002

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
in the above described alkoxide complexes $\left[\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{2}{ }^{-}\right.$ $\mathrm{Y}(\mu$-OMe $)]_{2}\left[73.6(1)^{\circ}\right.$; Evans et al., 1992], $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}(\mu\right.$ -$\left.\left.\mathrm{O}^{-}{ }^{i} \mathrm{Pr}\right)\right]_{2}\left[74.86(7)^{\circ} ;\right.$ Li et al., 2000] and $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}(\mu-\right.$ $\left.\left.\mathrm{OCH}=\mathrm{CH}_{2}\right)\right]_{2}\left[73.1(1)^{\circ}\right.$; Evans et al., 1986]. The $\mathrm{Y}_{2} \mathrm{O}_{2}$ ring is perfectly planar.

Due to the trigonal bipyramidal coordination geometry of the metal atom, the angle formed by the central yttrium atom and the two ring centroids is smaller than in the related tetrahedral complex $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}\left(\mu-\mathrm{O}^{i} \mathrm{Pr}\right)\right]_{2}\left(124.0^{\circ}\right.$; Li et al., 2000).

Experimental

A solution of 2,4-cyclopentadiene-1-ethanol ($0.22 \mathrm{~g}, 2.0 \mathrm{mmol}$; Ohta et al., 1977) in THF (5 ml) was added to $\mathrm{Cp}_{3} \mathrm{Y}(0.57 \mathrm{~g}, 2.0 \mathrm{mmol})$ in THF (10 ml), and the mixture was stirred for 15 min at ambient temperature until $\mathrm{Cp}_{3} \mathrm{Y}$ was completely dissolved. The solution was concentrated to 3 ml and hexane (10 ml) was added. After centrifuging the mixture, the resultant white microcrystalline solid of the title compound was separated by decantation, washed with hexane (10 ml) and dried in vacuum (yield $0.51 \mathrm{~g}, 72 \%$). Suitable crystals were obtained by recrystallization from dme (m.p. 385-388 K). Spectroscopic analysis, IR (Nujol, $v \mathrm{~cm}^{-1}$): 3060 (w), 1360 (m), $1040(\mathrm{~s}), 890(\mathrm{~m}), 780(\mathrm{~s}), 730(\mathrm{~m}), 520(\mathrm{w})$; elemental analysis, calculated for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Y}_{2}$: Y 25.26%; found: 25.08%.

Crystal data

$\left[\mathrm{Y}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=704.51$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=8.6073$ (2) А
$b=11.2146$ (1) \AA
$c=15.7840$ (1) \AA
$\beta=92.751$ (1) ${ }^{\circ}$
$V=1521.83$ (4) \AA^{3}
$Z=2$

Data collection

Siemens SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.448, T_{\text {max }}=0.659$
11359 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.088$
$S=1.01$
3482 reflections
183 parameters
$D_{x}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5194
reflections
$\theta=2.2-30.6^{\circ}$
$\mu=3.84 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colorless
$0.40 \times 0.38 \times 0.30 \mathrm{~mm}$

3482 independent reflections
2489 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.081$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 11$
$k=-13 \rightarrow 14$
$l=-15 \rightarrow 20$

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0324 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.47 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 8-\mathrm{C} 12$ rings, respectively.

$\mathrm{Y}-\mathrm{Cg} 1$	$2.4537(19)$	$\mathrm{Y}-\mathrm{C} 4$	$2.761(4)$
$\mathrm{Y}-\mathrm{Cg} 2$	$2.4260(17)$	$\mathrm{Y}-\mathrm{C} 5$	$2.690(3)$
$\mathrm{Y}-\mathrm{O} 1^{\mathrm{i}}$	$2.265(2)$	$\mathrm{Y}-\mathrm{C} 8$	$2.690(4)$
$\mathrm{Y}-\mathrm{O} 1$	$2.280(2)$	$\mathrm{Y}-\mathrm{C} 9$	$2.704(3)$
$\mathrm{Y}-\mathrm{O} 2$	$2.481(2)$	$\mathrm{Y}-\mathrm{C} 10$	$2.71(3)$
$\mathrm{Y}-\mathrm{C} 1$	$2.687(3)$	$\mathrm{Y}-\mathrm{C} 11$	$2.714(3)$
$\mathrm{Y}-\mathrm{C} 2$	$2.722(4)$	$\mathrm{Y}-\mathrm{C} 12$	$2.700(4)$
$\mathrm{Y}-\mathrm{C} 3$	$2.792(4)$		
$C g 1-\mathrm{Y}-\mathrm{Cg} 2$	$120.80(6)$	$C g 2-\mathrm{Y}-\mathrm{O} 1^{\mathrm{i}}$	$105.33(7)$
$C g 1-\mathrm{Y}-\mathrm{O} 1$	$94.49(7)$	$C g 2-\mathrm{Y}-\mathrm{O} 2$	$104.72(7)$
$C g 1-\mathrm{Y}-\mathrm{O} 1^{\mathrm{i}}$	$133.80(7)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Y}-\mathrm{O} 1$	$69.17(9)$
$C g 1-\mathrm{Y}-\mathrm{O} 2$	$93.85(7)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Y}-\mathrm{O} 2$	$75.83(8)$
$C g 2-\mathrm{Y}-\mathrm{O} 1$	$105.56(7)$	$\mathrm{O} 1-\mathrm{Y}-\mathrm{O} 2$	$138.45(8)$

Symmetry code: (i) $1-x, 1-y, 1-z$.
The H atoms were placed in calculated positions and assigned an isotropic displacement parameter of $0.08 \AA^{2}$. The idealized CH_{3} groups were allowed to rotate about their $\mathrm{C}-\mathrm{O}$ bond. The geometrical aspects of the structure were analyzed using PLATON (Spek, 2001).

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai \& Pritzkow, 1994); software used to prepare material for publication: SHELXL97.

This work was supported by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft, and the Russian Foundation for Basic Research (grant 00-03-32875).

References

Deelman, B.-J., Booij, M., Meetsma, A., Teuben, J. H., Kooijman, H. \& Spek, A. L. (1995). Organometallics, 14, 2306-2317.

metal-organic papers

Evans, W. J., Dominguez, R. \& Hanusa, T. P. (1986). Organometallics, 5, 12911296.

Evans, W. J., Sollberger, M. S., Shreeve, J. L., Olofson, J. M., Hain, J. H. Jr \& Ziller, J. W. (1992). Inorg. Chem. 31, 2492-2501.
Li, H., Yao, Y., Shen, Q. \& Weng, L. (2000). Acta Cryst. C56, 747-748.
Ohta, H., Kobori, T. \& Fujisawa, T. (1977). J. Org. Chem. 42, 1231-1235.
Rogers, R. D., Atwood, J. L., Emad, A., Sikora, D. J. \& Rausch, M. D. (1981). J. Organomet. Chem. 216, 383-392.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
Zsolnai, L. \& Pritzkow, H. (1994). ZORTEP. ORTEP Program for PC. University of Heidelberg, Germany.

